Threshold-pivoting in parallel Gaussian elimination for improved efficiency
نویسندگان
چکیده
The use of threshold pivoting with the purpose to reduce fill-in during sparse Gaussian elimination has been generally acknowledged. Here we describe the application of threshold pivoting in dense Gaussian elimination for improving the performance of a parallel implementation. We discuss the effect on the numerical stability and conclude that the consequences are only of minor importance as long as the threshold is not chosen
منابع مشابه
Complete pivoting strategy for the $IUL$ preconditioner obtained from Backward Factored APproximate INVerse process
In this paper, we use a complete pivoting strategy to compute the IUL preconditioner obtained as the by-product of the Backward Factored APproximate INVerse process. This pivoting is based on the complete pivoting strategy of the Backward IJK version of Gaussian Elimination process. There is a parameter $alpha$ to control the complete pivoting process. We have studied the effect of dif...
متن کاملStability of a Pivoting Strategy for Parallel Gaussian Elimination
Gaussian elimination with partial pivoting achieved by adding the pivot row to the kth row at step k, was introduced by Onaga and Takechi in 1986 as a means for reducing communications in parallel implementations. In this paper it is shown that the growth factor of this partial pivoting algorithm is bounded above by μn < 3 n−1, as compared to 2n−1 for the standard partial pivoting. This bound μ...
متن کاملOn Algorithmic Variants of Parallel Gaussian Elimination: Comparison of Implementations in Terms of Performance and Numerical Properties
Gaussian elimination is a canonical linear algebra procedure for solving linear systems of equations. In the last few years, the algorithm received a lot of attention in an attempt to improve its parallel performance. This article surveys recent developments in parallel implementations of the Gaussian elimination. Five different flavors are investigated. Three of them are based on different str...
متن کاملA survey of recent developments in parallel implementations of Gaussian elimination
Gaussian elimination is a canonical linear algebra procedure for solving linear systems of equations. In the last few years, the algorithm has received a lot of attention in an attempt to improve its parallel performance. This article surveys recent developments in parallel implementations of Gaussian elimination for shared memory architecture. Five different flavors are investigated. Three of ...
متن کاملParallel Sparse Gaussian Elimination with Partial Pivoting and 2-d Data Mapping Parallel Sparse Gaussian Elimination with Partial Pivoting and 2-d Data Mapping Abstract Parallel Sparse Gaussian Elimination with Partial Pivoting and 2-d Data Mapping
Sparse Gaussian elimination with partial pivoting is a fundamental algorithm for many scientiic and engineering applications, but it is still an open problem to develop a time and space eecient algorithm on distributed memory machines. In this thesis, we present an asynchronous algorithm which incorporates static symbolic factorization, nonsymmetric L/U supernode partitioning and supern-ode ama...
متن کامل